Relative Decay Conditions on Liouville Type Theorem for the Steady Navier–Stokes System

نویسندگان

چکیده

In this paper we prove Liouville type theorem for the stationary Navier–Stokes equations in \(\mathbb {R}^3\) under assumptions on relative decays of velocity, pressure and head pressure. More precisely, show that any smooth solution (u, p) satisfying \(u(x) \rightarrow 0\) as \(|x|\rightarrow +\infty \) condition finite Dirichlet integral \(\int _{\mathbb {R}^3} | \nabla u|^2 dx <+\infty is trivial, if either \(|u(x)|/|Q(x)|=O(1)\) or \(|p(x)|/|Q(x)| =O(1) \infty \), where \(|Q|=\frac{1}{2} |u|^2 +p\)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Liouville Type Theorem for an Integral System

In this paper, we study a conjecture of J.Serrin and give a partial generalized result of the work of de Figueiredo and Felmer about Liouville type Theorem for non-negative solutions for an elliptic system. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality.

متن کامل

A Liouville-type theorem for Schrödinger operators

In this paper we prove a sufficient condition, in terms of the behavior of a ground state of a symmetric critical operator P1, such that a nonzero subsolution of a symmetric nonnegative operator P0 is a ground state. Particularly, if Pj := −∆ + Vj , for j = 0, 1, are two nonnegative Schrödinger operators defined on Ω ⊆ R such that P1 is critical in Ω with a ground state φ, the function ψ 0 is a...

متن کامل

A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation

We consider the semilinear parabolic equation ut = ∆u+ up on RN , where the power nonlinearity is subcritical. We first address the question of existence of entire solutions, that is, solutions defined for all x ∈ RN and t ∈ R. Our main result asserts that there are no positive radially symmetric bounded entire solutions. Then we consider radial solutions of the Cauchy problem. We show that if ...

متن کامل

A Liouville type theorem for a class of anisotropic equations

In this paper we are dealing with entire solutions of a general class of anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.

متن کامل

A Liouville Type Theorem for Special Lagrangian Equations with Constraints

We derive a Liouville type result for special Lagrangian equations with certain “convexity” and restricted linear growth assumptions on the solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2021

ISSN: ['1422-6952', '1422-6928']

DOI: https://doi.org/10.1007/s00021-020-00549-9